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Abstract. The Ashkin-Teller-Potts model is examined using two renormalisation group 
methods: ( a )  the cluster expansion; and ( b )  the lower bound variational method. The 
critical surface is found to be in agreement with that conjectured by Wu and Lin. We find 
a very strong indication of a line of fixed points along which we obtain a continuous 
variation of the specific heat exponent with the four-spin coupling. A comparison is made 
with the eight-vertex model. 

1. Introduction 

The Ashkin-Teller model of statistical mechanics was introduced (Ashkin and Teller 
1943) as a generalisation of the Ising model to the case where each lattice site may be 
occupied by one of four different types of atom: A, B, C, D. The interaction energies 
between neighbouring pairs of atoms are given by: 

types of interaction energy 

A-A, B-B, C-C, D-D €0 

A-B, C-D € 1  

A-C, B-D € 2  

A-D, B-C €3 

and the Boltzmann weights by 

wi =exp(-ei /kT) i = O , l , 2 , 3 .  (1.2) 

The model definition does not make any distinction between the atoms and therefore 
all four types are treated on equal footing. The special case in which g1 = c2 = c3  was 
also considered by Potts (1952) and the general model is often known as the Ashkin- 
Teller-Potts (ATP) model. This particular Potts model satisfies a duality relation 
(Ashkin and Teller 1943, Potts 1952) enabling the critical temperature of the model- 
assuming there to be one transition only-to be located at 

wo/w = 3 (1.3) 

where w = w 1  = w 2  = w3. 

0305-4770/78/0010-2015$03.00 @ 1978 The Institute of Physics 2015 
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Fan (1972a) showed that the ATP model could also be considered in terms of Ising 
spins on two superimposed lattices. Thus, at each point of the lattice we have two 
spins (a, s) (figure l ) ,  and the four atoms may be represented as 

A = ( + ,  +) B E ( + ,  - )  C=(- ,  +)  D = ( - ,  -). (1.4) 

Figure 1. The interactions between a nearest-neighbour pair of sites on the ATP lattice, 

The energy of interaction is then given in terms of coupling constants 

E o  = Jo + J ,  +Js +Jes 
€ 1  = J o + J u - J s - J , ,  

E * = J O - J u + J s - J u s  

€ 3  = Jo -.Tu - Js +Jus 
where Jo is a constant. The equivalence of atoms A, B, C, D then implies the 
equivalence of e l ,  e2 ,  € 3  and also of J,, Js, Jus. 

In a similar manner we may also represent the eight-vertex model (see, e.g., Lieb 
and Wu 1972) in terms of interactions J + ,  J -  and J between Ising spins on a square 
lattice (figure 2). The Boltzmann constants, a, b, c, d corresponding to the possible 
vertex types, are then given by (Kadanoff and Wegner 197 1): 

a = A  exp(K++ K - + A )  

b = A  exp[-(K++K-)+A] 

c = A  exp(K+-K--A) 

d = A exp[ - ( K ' - K - ) - A ]  

where A is a constant and K* = J * / k T ,  A = JkT. 
When the ATP and the eight-vertex models are both written in their Ising 

representations it may be seen that they have similar symmetry properties (Fan 

Figure 2. The interaction constants of the king representation of the eight-vertex model: 
J' between next-nearest neighbours on the positive diagonal; J -  between next-nearest 
neighbours on the negative diagonal; J coupling the four spins around a unit square. 
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1972b). Due  to this similarity Fan suggested that the two models might be related in 
some manner. Wegner (1972) showed that, in fact, the relationship was between the 
ATP model and the staggered eight-vertex model (having weights a ,  b, c+, d ,  and 
a, b, c-, d -  on the two sublattices) with c+ = d- ,  c- = d+. He proved this by applying a 
duality transformation to the spins of one  layer (the s layer) of the ATP lattice, thereby 
obtaining the equivalence of the following expressions: 

J,, = J, b=O (1.7) 

J,  = J, a = b + c + +  d ,  (1.8) 

wg = w1+ o z + w 3  c+ = c - =  d+= d-. (1.9) 

The  transformation does not, however, enable us to determine any of the exponents 
from a knowledge of the equivalent eight-vertex ones. 

Using the known exact information about the Ising (Onsager 1944) and the 
eight-vertex (Baxter 1972) models, Wu and Lin (1974) conjectured that the ATP 
model should, in general, have two phase transitions-the exception to this being the 
cases Ji = Jj  > Jk. Then under the assumption (without loss of generality) 

w g =  1 0 s w , ,  w * ,  w3 s 1 (1.10) 

they proposed a form for the critical surface of the model (see figure 3 )  consisting of 
three symmetrically placed cups meeting each other along lines for which two of the 

W ?  

Figure 3. The critical surface of the ATP model, as conjectured by Wu and Lin. The lines 
joining ABCDEF are the lines of criticality of the king model, and the point P is the 
critical point of the four-state Potts model. 
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interactions J,, J,, Jus become equal. (These are the three lines meeting at P in figure 

Baxter’s solution of the eight-vertex model showed that the critical exponents 
varied continuously as a function of the four-spin coupling, A ,  thereby contradicting 
the universality hypothesis. Kadanoff and Wegner (197 1) showed that this variation 
could, in fact, be accounted for within scaling arguments which are the basis of 
universality. Due to the similarity of the two models, and in particular to the fact that 
both models contain a four-spin coupling, it seems possible that the ATP model could 
be a second candidate for continuously varying exponents. For this reason much 
attention has been centred on the ATP model. 

Recently many statistical mechanical problems have been studied using the 
renormalisation group introduced by Wilson (197 1) as a transformation in momentum 
space, and later extended to real space by several authors (Niemeyer and Van 
Leeuwen 1974, Kadanoff and Houghton 1975.) These transformations have given a 
relatively simple and accurate method of studying the critical properties of various 
models. In this paper we report the results of renormalisation group (RNG) studies of 
the ATP model. In S 2 we use symmetry arguments to consider the expected form of 
the critical surface and in 0 3 we describe the results obtained for this surface using the 
cluster expansion of Niemeyer and Van Leeuwen. In $ 4  we have used the lower 
bound RNG transformation of Kadanoff and Houghton (1975) (which proved to be 
remarkably accurate for the simple Ising model) to study the possibility of varying 
exponents for the ATP model and also to obtain numerical estimates for these 
exponents. Some of these results have previously been reported (Ashley and Green 
1976). 

3.1 

2. The expected form of the critical surface 

From a study of the known exact results on the Ising and eight-vertex models and their 
relationship with the ATP system, Wu and Lin (1974) were able to propose a form for 
the critical surface of the Ashkin-Teller model. This surface is shown in figure 3, and 
shows clearly the expectation of two phase transitions except in the cases 

W .  = *. > 
I ,--wk. 

The existence of these two phase transitions was also noted by Wegner (1972) who 
reasoned that, because the symmetry group of the system has three non-trivial 
subgroups, the model should undergo first a partial, and then a complete disordering. 

We consider the two-layered Ising lattice representation of the model in which 
there are two spins ( u , s )  at each lattice site. We distinguish between three (not 
independent) layers: the U and s layers consisting of the lattices of u and s spins 
respectively, and the us layer whose spins are the product of the CT and s spins at each 
site. Assuming that there are no external fields, the model may be described in terms 
of three nearest-neighbour couplings J,, J, and Jus. The ATP symmetry then implies 
that the model is unchanged under any permutation of (Ju,Js,Ju,). Under the 
assumption (1.10) we may write the Boltzmann factors as 
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and the coupling constants 

where Ki = JJkT. Over the whole of the region 0 < m i  S 1 this correspondence is 
one-to-one, but this is no longer true if any of the wi are equal to zero. (We assume 
this to be physical.) For example if w, = w, = 0 ,  w,, # 0 then all the K points subject 
to the restrictions 

K,, ' = '00 K,+K,= - i Inw, ,  (2.3) 

correspond to the single w point (0, 0, w,,). This one-to-many correspondence is 
important since we will find points of the critical surface on the w axes. 

We start by considering the critical behaviour of the model having K,, K,, K,, all 
different. We take 

I K , I > I K , I > I K ~ ~ I  
and note that other equivalent parts of the critical surface may be described by taking 
a permutation on (a, s, as). As always, at high temperatures, the spins are randomly 
aligned. As the temperature is lowered, K,, being the largest of the three couplings, 
forces the U layer to order first at a temperature T I C .  At this point the s and as layers 
have no overall order. On lowering the temperature still further the effect of K, will 
be enough to force layer s to order at a temperature T2c. Since, at this point, the as 
layer is the product of two ordered layers it will also be ordered and there can be no 
further transition. This analysis is true even if IK,/ > IK,] = lK,,l. However, if IK,I = 
lK,l L IK,,l then layers U and s will order first and together. Thus, with the first two 
layers ordering together we go straight from the high to the low temperature phase 
and there is only one transition. 

We now consider the case in which one of the interaction constants, say K,,, is 
negative. The conditions (1.10) imply that at most one of the K,  may be negative and 
that this one must have a smaller modulus than the others. In this case we have two 
ferromagnetic interactions competing with a less powerful antiferromagnetic inter- 
action, and since the three layers are not independent it is only possible to achieve a 
ground state at low temperatures on two of the layers. For given K, and K, and 
K,, S 0 the model giving the minimum energy ground state has K,, = 0, this being the 
limiting model for which all three layers achieve their respective ground states. The 
philosophy of the renormalisation group is to do an averaging over the short-range 
detail of the system at each iteration. Thus, it seems likely that some of the detail to 
be lost in an approximate scheme would be that concerned with the instability due to 
one of the layers of a system with a negative coupling constant not being in its ground 
state at low temperatures. This would imply that a fixed point governing the low 
temperature behaviour (as well as that governing the high temperature behaviour and 
any other stable fixed point) of such a system would have a corresponding zero 
coupling constant, K,, = 0. Also, since all stable fixed points have K,, = 0 any fixed 
point corresponding to critical behaviour will have K,, = 0. Under this assumption it  
is impossible to have continuously varying exponents for negative K,,, since this would 
require a line of fixed points having negative K,, values. Finally, since any fixed point 
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having one of the K, = 0 will be of Ising form, we therefore expect the negative K,, 
model to having Ising behaviour and exponents. 

If, in particular we have K,  > K,  7 0,  K,, = - K,  then after layer U has ordered 
there will be no further transition, since there is no energy advantage in the other 
layers ordering. So, in this case, there is only one transition and the low temperature 
state is governed by a fixed point at K,  + m, K,, K,, = 0. 

The above results are summarised in table 1 which shows the values of the 
interaction constants K,, Ks, K,, at the stable fixed points of all the ATP models. 

Table 1. The stable fixed points governing all types of ATP model 

High temperature Stable fixed point 
fixed point for partial ordering 

K l =  0 I = U> S, US - 
Kl= 0 I = U,  S, 0 s  - 
Kl = 0 I = U, S, US Kk + X K,,  K, = 0 

K I = O  [ = U ,  S , U S  K k + m  K,, K,=O 

Ki = 0 / = U, S, US - 

KI = 0 I U, S, US - 

Low temperature Number of 
fixed point transitions 

3. The critical surface found by cluster expansion calculations 

After Wilson’s development of the momentum-space RNG, Niemeyer and Van 
Leeuwen (NVL) introduced a real-space RNG which has proved to be particularly 
convenient for the study of many statistical mechanical problems. In their paper NVL 

developed two methods- the cumulant and the cluster expansions. In this report we 
consider only the cluster expansion. 

In this theory the lattice is blocked into cells such that each spin is in exactly one 
cell and the cell pattern has the same symmetry as the original lattice. A new spin, p,  
is then placed within each cell and the renormalised coupling constants calculated by a 
partial trace method. 

NVL, working with the Ising model on the plane triangular lattice, found that the 
most suitable definition for the cell spin was given by the sign rule 

w,  = sgn(all + uZ2 + ut&. 

In applying the transformation to the square lattice Nauenberg and Nienhuis (1974) 
used a similar definition for the cell spin by allocating three of the configurations for 
which Xu, = 0 to positve cell spin and the other three, obtained by reversal of all spins, 
to negative cell spin. 

In this section we extend the cluster expansion to the ATP model using the 
two-layered king representation. We follow Nauenberg and Nienhuis in choosing 
cells of four sites each (see figure 4). Since we have two layers of Ising spins we must 
define two new spins per cell-p in the D layer and t in the s layer. From the 
symmetry of the ATP model these two spins are equivalent and also equivalent to a 
new interlayer spin pt, in the us layer. The fact that the new spins p, t and pt are not 
independent imposes restrictions on the cell spin definition. It is not possible, for 
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Figure 4. A cluster of two four-site cells on the square ATP lattice. 

instance, to use the definition of Nauenberg and Nienhuis within the U and s layers 
separately, since this leads to a contradiction in the definition of the interlayer spin, pt. 
For consistency and in order to retain the ATP model symmetry, we find that the only 
possible cell spin definitions are: 

( a )  pi = * ( + I ,  ti = * s,, ( C L f ) ,  = * (us),, j = l , 2 , 3 , 4  

( b )  pi = * c+i,(+ik ti = *S,SIk (pt>i = * (US )i, (us ) i k  j and k distinct 

(c) pi = * (+ i l (+ iz (+i3ui4 l (+iJ  ti z= * silsizsi3si4Isi, 

( d )  ~i = * ( + 1 1 ~ 1 2 ( + 1 3 ~ ~ 4  ti = Si, Si2S i3S i4  ( t L f ) i  = (us )i,(us )iZ(rs)i3(us)i4. 

In choosing a suitable definition, we impose the restriction that under the trans- 
formation 

U, + - ( T i  si + - - S I  for all i 
we have 

C L I  + - C L 1  ti + - t,. 

We are thus left only with types ( a )  and (c ) .  Symmetry arguments show that each 
definition within a given type gives the same results. The  effects of the definitions of 
types ( a )  and (c) on the k ing  and Potts model fixed points were investigated (using a 
two-cell cluster). The  results are shown in table 2 and although it can be seen that the 
results d o  depend on the definition used, there does not appear to be any criterion for 
the  choice. In this work we have defined the  cell spins by 

CL. 1 = ff, 1 1  ri = s,, 

With this form of the cluster expansion we cannot get good quantitative results due  
to the size of the cluster used and to the difficulty in defining a suitable cell spin. The  
cluster expansion does, however, seem to give good qualitative results and we expect 
this to be carried over into our adaptation of the transformation to the ATP model. 



2022 S E  Ashley 

Table 2. The fixed points of the king and Potts models for the two possible definitions of 
cell spin. 

K: =K: Specific heat exponent 

Definition of cluster cluster cluster exact/ 
Model cell spin p expansion exact expansion exact expansion series 

/L = *U, 0.69711 0.44064 0.0 0.0 0,00440 0.0 

/L = fu1u2u304/0t 0.88366 0.44064 0.0 0.0 0.0928 0.0 

i =  1.2 ,  3 , 4  

i =  1, 2, 3 .4  

king 

0.41088 0.27465 0.41088 0.27465 0.34147 0.64*0.0.5" CL = *U, 
i = 1 , 2 , 3 , 4  

' = *u1u2g3u4'ui 0.49290 0.27465 0.49290 0.27465 0.38967 0 . 6 4 i 0 . 0 5  i = 1 , 2 , 3 , 4  

Potts 

From Enting (1975). 

The renormalisation group transformation, R, transforms one set of coupling 
constants, { K } ,  to a new set { K ' }  

R (W)) = IK'I 
and a fixed point is given by 

R({K*} )  = {K"} .  

The transformation is linearised about the fixed point 

{ K ' } =  R ( { K } ) =  R ( { K * } + E { K } ) = { K * ) + E R ' ~ ( { K } ) + O ( E ~ )  

and the eigenvalues, A,, and eigenfunctions, U ,  ( { K } ) ,  of R L  are calculated: 

R L ~ z ( { K ) )  = Aiut({K}). 
By applying the transformation R to the function {K*}+u , ( {K} )  it is seen that an 
eigenvalue A ,  greater than one corresponds to an instability in the fixed point, the 
direction of which is given by the eigenfunction, U , .  We expect the fixed points 
corresponding to high and low temperature behaviour, to be stable with respect to a 
small change in the temperature, and we therefore refer to these as the stable fixed 
points. The fixed point corresponding to critical behaviour, will, however, be unstable 
to a small temperature change, and will be denoted an unstable, or critical fixed point. 

Application of the transformation leads to unstable fixed points of only two 
types-the Potts model fixed point and fixed points of king type. Results for these are 
shown in Table 2. 

By iterating the transformation from a given starting Hamiltonian, H(K,, K,, K,,), 
we move along flow lines of the transformation to a stable fixed point describing the 
state of ordering of the initial Hamiltonian. By taking a series of starting Hamil- 
tonians with a given ratio R = K, : K, : K,, and finding their flow lines we, in effect, 
study the behaviour of the model as the temperature is varied. Thus if one starting 
Hamiltonian H1(R ; T,)  flows to the high temperature fixed point (all Ki + 0) we 
conclude that H I  represents a system in a disordered state at temperature T1. By 
varying T from 0 to 00 (or equivalently by varying K, from CD to 0) we find the 
temperatures which give an ordered, a partially ordered and a disordered state, and 
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therefore by finding the boundary values T, of T for these regions, we find the 
temperature at  which phase transitions take place. A graph of the flow lines (K, 
against Kes)  for the ratio 

R K,  : K, : K,, = 1 : 1.3 : 1.6 

is given in figure 5. (A similar graph is obtained for K, against Kc,). ‘The broken lines 
in this graph are the lines between two regions and thus form a part of the critical 
surface. The  end points of these critical lines are unstable fixed points which govern 
the critical behaviour of the particular ATP model under consideration. From figure 5 
we see that the model, having ratio R, undergoes two phase transitions as expected. 

0 0 5  1 0  1 5  
K, r 

Figure 5. The flow lines for the cluster expansion for the ratio R = K , :  K, : K,, = 
1:1.3:1.6. 

The above procedure was carried out for a set of values of R. The critical lines 
found by this method gave a critical surface consisting of three equivalent cups 
touching each other along lines for which Ki = Kj  2 Kk, in qualitative agreement with 
that found by Wu and Lin (figure 3). We should not be surprised at  this agreement 
since the shape of the critical surface was arrived at by symmetry arguments and we 
know that the RNG is defined so that all lattice symmetries are maintained. 

The  critical surface for K, = K, is shown in figure 6 ,  confirming that for K,, > K,  = 
K, we d o  find two transitions, but only one  for  the case K, = K, 2 K,, as expected. 

$ 0 2  

0 02 01 06 08 1 0  
Wl< 

Figure 6. The cross section of the critical surface of the ATP model for which K ,  = K,. 
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Under iteration all Hamiltonians, with the single exception of the Potts model 
Hamiltonian, were governed by Ising-like fixed points. Thus, this method of analysis 
gives no indication of a line of fixed points and therefore no continuously varying 
exponents. However, the simpler we make an approximation, the less likely it is to 
find a given fixed point and so we should not be surprised that our crude approxima- 
tion found only the fixed points of special symmetry. 

As expected the model with three different interactions gave two transitions. The 
transition away from the high temperature phase was governed, in all cases, by Ising 
model fixed points-K, = S,  K, = Kk = 0, where S is the critical temperature of the 
Ising model The second transition was governed by fixed points at oi = r = e-2s, 
w, = o J k  = 0, which as noted before is a one-to-many correspondence of the o-K 
transformation. In terms of the coupling constants different models are governed by 
different fixed points. However, since these fixed points are approached along lines of 
constant K j  and Kk it  can easily be shown that, at least within the RNG of nearest 
neighbour couplings only, all these fixed points give Ising exponents. Therefore the 
cluster expansion leads us to expect Ising exponents for all ATP models except the 
single case of the Potts model. 

4. Analysis of the ATP model using the lower bound renormalisation transformation 

In 1975 Kadanoff first introduced a real-space RNG using a variational approximation. 
The basic philosophy being that a set of transformations could be defined, using a 
number of free parameters, to give either an upper or a lower bound to the free 
energy. The best transformation was then defined to be that for which the choice of 
free parameters gave an optimal bound on the free energy. In practice there is no 
guarantee that these optimal transformations need either give a value of the free 
energy close to its true value or that the exponent values-found from the derivatives 
of the free energy-need be close to their values. However, when Kadanoff and 
co-workers applied the transformation to the square Ising model they obtained 
remarkably accurate results. In view of the accuracy of these results we thought it 
worthwhile to apply this transformation to the ATP model. 

A full description of the lower bound transformation is given in Kadanoff et a1 
(1976), but for completeness we give a brief description of the main points of the 
transformation as extended to the ATP system. 

We consider a system of 2N king spins, two, (U, s), being placed at each vertex of 
a two-layered lattice. The system is then described by a Hamiltonian H, which is a 
function of some set of coupling constants {K}, including, in particular, the nearest- 
neighbour couplings K,, K,, Kus. The RNG transformation, R, will then take us to a 
new set of spins { F ,  t }  described by a Hamiltonian, H’,  and coupled by a set of 
coupling constants {K’} .  The condition on the exact transformation is that the free 
energy is unchanged in the transformation. In practice, however, we are unable to 
find such an exact transformation and we must resort to some approximation. 
Kadanoff er a1 did this by forming lower bounds on the free energy: 

where RI represents the approximate RNG transformation. In defining this lower 
bound transformation we introduce a set of variational parameters p .  Then the exact 
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transformation is given by 

H'(,u, t ) =  - In  1 exp(-H(u,  s)+ T ( F ,  t,  U, s , ~ ) )  
{u.s) 

where, in order that the free energy is unchanged, we must have 

1 exp(T(cL, t ,  U: s, p ) ) =  1 
irr .r)  

and the lower bound transformation is 

(4.3) 

H'(u ,  t )  = -In 1 exp( - H ( a ,  s ) +  T ( p ,  t, U, s, p ) +  V(u,  s)) (4.4) 
{U s i  

where, by choosing V to be a sum of terms, each odd under some lattice symmetry, we 
have ensured that the free energy is, in fact, a lower bound on the exact free energy. 

Now define 

where the S, are a complete set of spin functions { S }  obeying all the lattice symmetries. 
We find that there are 55 of these spin functions. However, in applying the trans- 
formation, we follow Kadanoff in performing an initial decimation thus obtaining a 
permutation symmetry between the sites of a square. In this way we restrict the spin 
functions to a set of 35, thus making the problem more manageable. The  symmetry of 
the transformation will imply that HI(@, t )  may be written in a similar form to H ( u ,  s). 

W e  now consider the lattice to be coloured as shown in figure 7. The new set of 
spins, {,u, t }  are placed within the red squares. Choose 

T ( P ,  t, U, s, p )  = c ( C L P S U ,  + rpsss, + CL~pus1Sus1 - U )  (4.6) 
red 

squares 

where 
s,, = r Y l +  u*+u3 + U 4  

s,, = s 1 + s. + s3 + sq 

sus, = u1si + u 2 s 2  + u3s3 + u4s4 
U,, si, i = 1 , .  . . , 4 ,  are the spins around a red square and U is such that (4.3) is 
satisfied, i.e. 

1 (4.7) U = In(eQ+b+c + e - a + b - c  + e - a - b c c  

where a = p S q , ,  b = psSslr c = purSuS, pu, ps ,  pus are our variational parameters. 

I I f  

Figure 7. The division of the square lattice into red, blue and green squares 
malised spins are placed in the red squares 

Renor- 
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Finally V is chosen so that all the interactions within the red and green squares are 
moved to the blue squares. This enables the sum in (4.4) over all squares of the lattice 
to be separated into a product of sums over the spins around the blue squares. Each 
sum is now only over 256 terms and the transformation is manageable. The trans- 
formation may be written 

H ' ( p ,  t ) =  -1 K:Si(I*, t )  
i 

= -1n expjp, t pia, +ps f tist +p,s 

(ea+b+c+ea--b-c + e -a + b -c + e -a - b +c)- 1 

pitiaisi +4 1 ~ i s , ( c ,  s)) 
(0,s) i = l  i = l  i = l  I 

where the first sum within the large parentheses is over all cell spins surrounding the 
blue cell and the last is over all the coupling constants Ki. 

As usual the critical properties of the system are determined by the eigenvalues, Ai,  
of the derivative matrix 

T~~ = dKJaK,. 

From the eigenvalues we calculate a further set of quantities a, : 

In A i  
' d l n l  

a ,  =- 

where d is the dimension of the system and 1 is a new lattice spacing in terms of the 
old. Thus in our case ai  = I n  Ai/ln 4. We assume, along scaling argument lines, that 
the free energy F, is a homogeneous function of the reduced temperature t, the 
magnetic field h, and any other property x, showing singular behaviour: 

AF(t, h,  x ) =  F(Aat, Abh, A'x) 

where a, b and c may be identified with the ai defined above. Scaling now allows us to 
write the exponents cy and S as cy = 2 -(l /a),  S = b/(l  - b )  and also to express the 
critical exponents corresponding to the singularity in the property x, in terms of a, b, c. 

Due to the two-layered nature of the system, the ATP model has two order 
parameters: 

magnetisation 

polarisation P = (aisi). 

M = (a,) = (Si) 

Thus in addition to the normal magnetisation exponents 8, and Pm corresponding to 
the singular behaviour of the spin function S,, (or S s , ) = k i  as H+O(t=O) and 
t + O(H = 0) respectively, we expect to find critical exponents 6, and Pe corresponding 
to the critical behaviour of the spin function S, , , ,  = &,. 

Although our  definition of the RNG transformation allows us to include external 
fields, we have, for simplicity, only studied the ATP model in the absence of any such 
fields. In effect this reduces the dimension of the space in which we are searching for 
fixed points to an eleven-dimensional space of coupling constants. The coupling 
constants, together with the corresponding spin functions are given in table 3. 

As in the case of the cluster expansion, successive applications of the trans- 
formation lead us along flow lines to a stable fixed point. By obtaining these flow lines 
for a given p,, ps and pus the approximate position of a line of critical surface was 
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Table 3. The couplifig constants and corresponding spin functions 

Coupling Corresponding spin function 
constant 

found. I t  was then possible, by taking as our starting point a Hamiltonian on the 
approximate critical line and using numerical convergence techniques, to find a fixed 
point Hamiltonian 

HW, PO? P S >  P m )  = H*(K*,  P m  P S >  Pm1 (4.9) 

having instabilities in certain directions. The best fixed point was then found by 
optimising over the free parameters according to the prescription given by Kadanoff et 
a1 (1976), so that 

H * ( K * ,  Pcr, PS, Po,)= H*(K* ,  P 2  PT, P L ) .  (4.10) 

We first describe the results obtained for the particular case K,, = 0, of the ATP 

model which decouples into two simple Ising models. Although this case is rather 
trivial we use i t  as an illustration of the accuracy of the method. For K,  # Ks we find 
two transitions at temperatures T I ,  and T2c. We take T I C >  T2c. As the temperature is 
varied we find several regimes: - 

T > TI,. The model is completely disordered and there are no relevant eigen- 
values at the fixed point (corresponding to the fixed point being stable in all 
directions). 
T1 = TlC >. T2s. This is controlled by a fixed point having relevant temperature 
and magnetic eigenvalues AT,, and AHo corresponding to instabilities in the 
fixed point in these directions in the U lattice. 
Tz,  C= 7 < T I C .  We find a magnetic eigenvalue due to the U lattice being in an 
ordered state. 
T = TZc. In this case the fixed point has temperature and magnetic eigenvalues 
for the s lattice. 
T < TZc.  This is governed by the low temperature fixed point and we have 
magnetic eigenvalues for both lattices. If, in particular we have K = Ks then 
the types (b ) ,  (c ) ,  ( d )  are replaced by a single type: 
T = T I ,  = T2c. The model has one transition only and its critical properties are 
governed by a fixed point with two equal magnetic eigenvalues. In this case we 
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find a marginal eigenvalue, A = 1, corresponding to a neutral stability in the 
Ku, direction. 

In addition to the above mentioned eigenvalues we find crossover exponents 
q51, &, 43 corresponding to the critical behaviour of the spin functions 

(4.1 1) 

for various values of the ratio T1,/Tzc. Since, in this case, the two lattices a re  
decoupled we may express these functions as a product of the functions on the two 
lattices separately. Thus 

s1= su,s,, s2 = su,s,, s3 = su,s,,. (4.12) 

From the Ising model results we will then know the exact values of c$,, 42 and d3. 
Table 4 gives the values of the fixed point couplings and free parameters, and table 

5 the a, values corresponding to the magnetic and temperature eigenvalues together 
with the exact results for comparison. Table 6 shows the crossover exponents for the 
two cases: (i) TIC> T*c; (ii) TI, = TzC. 

The  method of finding the flow lines of various starting Hamiltonians with a given 
ratio R K, : K, : K,, and fixed pu, p s ,  pus was used to confirm that we d o  indeed find 

Table 4. The coupling constant and variational parameter values at the fixed points of the 
decoupled ATP model (Kus = 0). 

Fixed 
point K :  KT P 8  PT P 2 
a 0 0 0 0 0 
b 0,1397 0 0,766 0 0 
C X 0 X 0 0 
d X 0.1397 02 0,766 0 
e cc m X X 0 
f 0,1397 0.1397 0,766 0,766 0 

Table 5. The a, corresponding to magnetic and temperature eigenvalues for all fixed 
points of the decoupled ATP model (Kus = 0). 

QHU a Hr a To a rS 
Fixed calculated/ calculated/ calculated/ calculated/ 
point exact exact exact exact 

a - - - - 
b 0,9377 - 0.5005 - 

0,9375 0.5 
1.00 - - - 
1.00 

1.00 0,9375 0.5 
1.00 1 .00 
1.00 1.00 

0,9375 0,9375 0.5 0.5 

C 

d 1.00 0.9377 __ 0.5005 

e - -- 

f 0.9377 0.9377 0.5005 0.5005 
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Table 6 .  The crossover exponents at temperature TI, for two decoupled Ising systems 
having transition temperatures Ti, and TZc. &, i = 1, 2, 3 represent the exponents 
calculated by the LBRNGT and 4,E the corresponding exact values. 

T1,>TZc 0.1247 0.125 0.9991 1.0 0.1247 0,125 
Ti,= Tzc 0.2494 0.25 1,124 1.125 1,124 1.125 

two phase transitions for the general case of the ATP model. In order to obtain any 
numerical results by this method, however, would entail the variation of the pl to their 
optimum values at each iteration of the transformation. Due to the extremely time 
consuming nature of this process, this was not done. 

For the particular case K,= K,ZK,, in which the ATP model undergoes one 
transition only, we do find an indication of a line of fixed points when K,, 3 0 .  As 
expected we find no fixed points having one of the nearest-neighbour couplings 
negative. Strictly speaking, for a best transformation and therefore a fixed point, we 
should require that the transformation be optimal with respect to pc, p s  and pus 
simultaneously. In practice, we find that this is only true exactly in the cases of special 
symmetry, e.g. the Potts model in which all three parameters are constrained to be 
equal, and the decoupled Ising lattices model in which pus is constrained to be zero. 
However, it was found possible to obtain a line of fixed points for 0 s K,, s K, = K, in 
the two cases: (1) for optimal p1 = p 2 ;  (2) for optimal p 3 .  

We find that for K J K ,  small and also for K,,/K, close to 1 the fixed points are 
sufficiently close to being optimal for all three parameters simultaneously that in these 
regions we may infer a line of fixed points within the eleven-dimensional space of 
coupling constants. A graph of K,, against K,  for the two cases described above is 
shown in figure 8. From this we may see that while the pu-ps curve is smooth and well 
behaved, there appears to be a singularity in the pus curve. At each of the fixed points, 

KO 

Figure 8. A graph of K,, against K, for the region 0 L K,, L KO( = K,) in the two cases: 
(i) optimal p ,  and p2 (ii) optimal p3 (broken curve with open circles). Fixed points which 
may be considered to be optimal for all three parameters are denoted by asterisks. 
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Figure 9. Graphs against K,, of: ( a )  the specific heat exponent, a ;  and the magnetic 
exponents ( b )  p and ( c )  6 ;  for the region O S  K,, SIC,( = Ks) in the two cases: (i) optimal 
p1 and p 2  (full curve with crosses); (ii) optimal p 3  (broken curve with open circles). 

values of the critical exponents were calculated and graphs of a, p and 6 against 
K,,-the four-spin coupling-in the same two cases as above are shown in figures 
9(a), (b ) ,  ( c ) .  Again the singularity in the P,, curve shows up clearly while the pu-ps 
curve is well behaved. It is worth noting here, that although the 6 curve does appear 
to vary considerably, this exponent is extremely sensitive to the exact position of the 
fixed point and thus our results need not contradict the hypothesis that 6 = 15 for all 
values of Kv,, 

The  reason for the singularity in the pus curve is not clear, but due  to  the 
smoothness of the p,-p, curve it is tempting to treat this set of fixed points as a true 
line of fixed points and compare our results with those of the eight-vertex model. W e  
note that the values of the specific heat component a, are the same for the two models 
in the two cases: 

(i) the symmetric case K, = K, = K,, and A = K' = K - ,  a = t ;  
(ii) the decoupled case K,, = 0 and A = 0, a = 0. 

It therefore seems possible that a takes the same values in the two models for the 
same ratio of the four-spin coupling to the two-spin couplings. 

In order to make a direct comparison though, it would be necessary to find the 
critical temperatures (i.e. K,,,) corresponding to  all the fixed points. However, as 
previously mentioned, the procedure necessary to find the critical temperature 
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involves optimisation over po, p s ,  pms at each iteration and is therefore not feasible. 
Thus it is only possible for us to make the comparison using the fixed point values of 
the couplings, K $  and K $ .  This comparison is shown in figure 10 from which it may 
be seen that the conjecture of equivalent a values for the two models is unlikely to be 
true. It would, however, be interesting to see how much difference a true comparison 
using the ATP critical temperatures would make. 

Finally it seems worthwhile to compare our  results for the decoupled model with 
exact results, and the Potts model results with series expansion results. This 
comparison is given in table 7. 

00 02 0 L  06 08 1 0  
R 

Figure 10. A comparison of the variation of a with the ratio R = four-spin coupling/two- 
spin couplings for the eight-vertex model (full curve) and for the ATP model (broken 
curve). For the ATP model the values of the couplings are the fixed point values. 

Table 7. Comparison of the king model and Potts model exponents with exact or series 
results. 

k ing model Potts model 

Critical renormalisation exact 
exponent group results 

renormalisation series 
group expansion 

a 0.0017 0.0 
Sm 15.040 15.0 
6, 7.021 7.0 
P m  0.1246 0.125 
P e  0.2494 0.25 

0.5009 0.64 * 0.05" 
15.65 15.8 i 0.8b 
15.65 15.8*0.gb 
0.09005 0.089 i 0.003" 
0.09005 0 ,0891  0.003" 

a Enting (1975). 
Enting (1976). 

5. Summary 

We have examined the ATP model, in the absence of any external fields, using two 
distinct RNG transformations. The  cluster expansion, used to give easily obtainable 
and good qualitative results, gave a description of the critical surface in accordance 
with that conjectured by Wu and Lin (1974). O u r  adaptation of the cluster expansion 
to  the ATP model was however, a very simple one  and the two-cell cluster used was not 
large enough to give good numerical results. 

The  Kadanoff LBRNGT was not suitable for a study of the whole of the critical 
surface due  to the enormity of the calculations required for this, but it was used to give 
numerical results for the critical exponents. We  found a very strong indication of a 
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line of fixed points giving varying exponents for the cases K,  = K, 3 Kk 2 0 and a 
comparison of these results was made with the exact eight-vertex model results. 

Away from the lines of fixed points our study leads us to believe that the ATP 

model has Ising behaviour and therefore Ising exponents. 
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